Plastic Medium-Power Complementary Silicon Transistors

Designed for general-purpose amplifier and low-speed switching applications.

Features

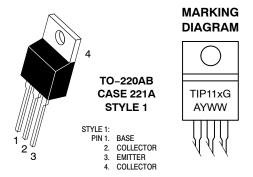
• High DC Current Gain -

• Collector-Emitter Sustaining Voltage - @ 30 mAdc

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 2.5 \text{ Vdc (Max)} @ I_{C}$$

= 2.0 Adc


- Monolithic Construction with Built-in Base-Emitter Shunt Resistors
- Pb-Free Packages are Available*

ON Semiconductor®

www.onsemi.com

DARLINGTON
2 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80-100 VOLTS, 50 WATTS

TIP11x = Device Code x = 0, 1, 2, 5, 6, or 7 A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

Rating	Symbol	TIP110, TIP115	TIP111, TIP116	TIP112, TIP117	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	Vdc
Collector-Base Voltage	V _{CB}	60	80	100	Vdc
Emitter-Base Voltage	V _{EB}		5.0		
Collector Current - Continuous - Peak	I _C	2.0 4.0			Adc
Base Current	I _B	50			mAdc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.4		W W/°C	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016		W W/°C	
Unclamped Inductive Load Energy - Figure 13	E	25		mJ	
Operating and Storage Junction	T _J , T _{stg}	-	-65 to +150)	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	62.5	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Small-Signal Current Gain ($I_C = 0.75$ Adc, $V_{CE} = 10$ Vdc, f = 1.0 MHz)

Output Capacitance

 $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$

Characteristic	Symbol	Min	Max	Unit				
OFF CHARACTERISTICS								
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 30 mAdc, I _B = 0)	TIP110, TIP115 TIP111, TIP116 TIP112, TIP117	V _{CEO(sus)}	60 80 100	- - -	Vdc			
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$	TIP110, TIP115 TIP111, TIP116 TIP112 ,TIP117	I _{CEO}	- - -	2.0 2.0 2.0	mAdc			
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$	TIP110, TIP115 TIP111, TIP116 TIP112, TIP117	Ісво		1.0 1.0 1.0	mAdc			
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	2.0	mAdc			
ON CHARACTERISTICS (Note 1)			•	•	•			
DC Current Gain $ (I_C = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $ $ (I_C = 2.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}) $		h _{FE}	1000 500	- -	-			
Collector-Emitter Saturation Voltage (I _C = 2.0 Adc, I _B = 8.0 m.	Adc)	V _{CE(sat)}	-	2.5	Vdc			
Base–Emitter On Voltage (I _C = 2.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	-	2.8	Vdc			
DYNAMIC CHARACTERISTICS	<u>.</u>		•					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width $\leq 300 \, \mu s$, Duty Cycle $\leq 2\%$.

TIP115, TIP116, TIP117

TIP110, TIP111, TIP112

25

200

100

рF

h_{fe} C_{ob}

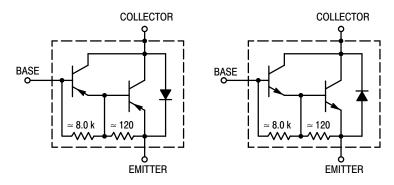


Figure 1. Darlington Circuit Schematic

ORDERING INFORMATION

Device	Package	Shipping
TIP110	TO-220	50 Units / Rail
TIP110G	TO-220 (Pb-Free)	50 Units / Rail
TIP111	TO-220	50 Units / Rail
TIP111G	TO-220 (Pb-Free)	50 Units / Rail
TIP112	TO-220	50 Units / Rail
TIP112G	TO-220 (Pb-Free)	50 Units / Rail
TIP115	TO-220	50 Units / Rail
TIP115G	TO-220 (Pb-Free)	50 Units / Rail
TIP116	TO-220	50 Units / Rail
TIP116G	TO-220 (Pb-Free)	50 Units / Rail
TIP117	TO-220	50 Units / Rail
TIP117G	TO-220 (Pb-Free)	50 Units / Rail

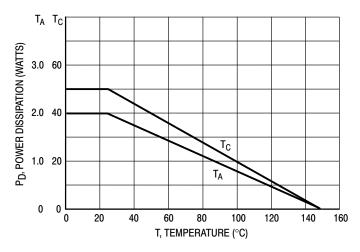


Figure 2. Power Derating

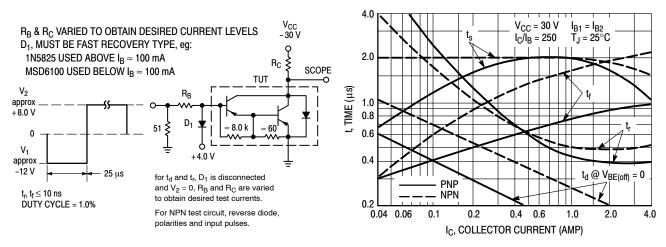


Figure 3. Switching Times Test Circuit

Figure 4. Switching Times

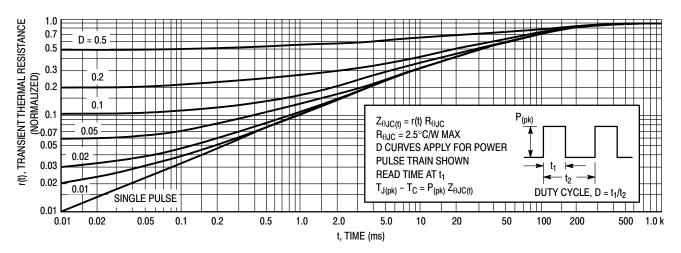


Figure 5. Thermal Response

ACTIVE-REGION SAFE-OPERATING AREA

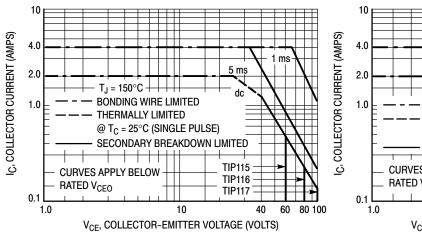


Figure 6. TIP115, 116, 117

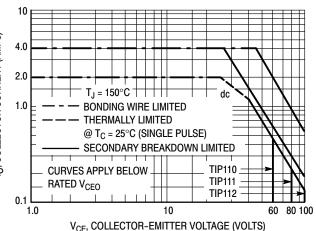


Figure 7. TIP110, 111, 112

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 6 and 7 is based on $T_{J(pk)} = 150^{\circ}\mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ}\mathrm{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 5. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

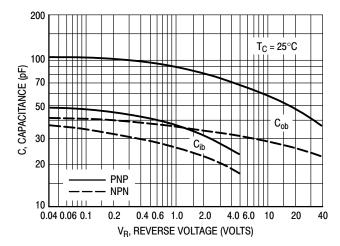


Figure 8. Capacitance

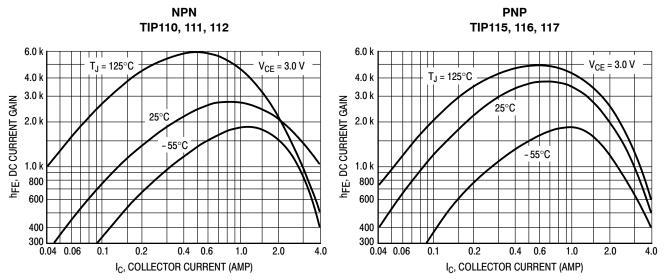


Figure 9. DC Current Gain

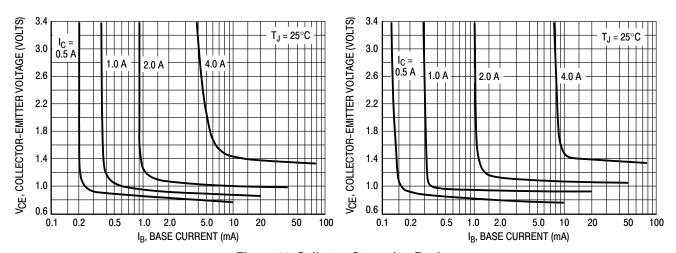


Figure 10. Collector Saturation Region

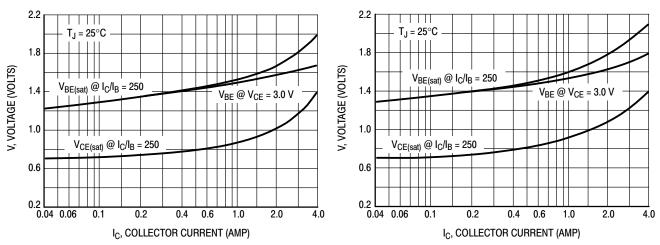


Figure 11. "On" Voltages

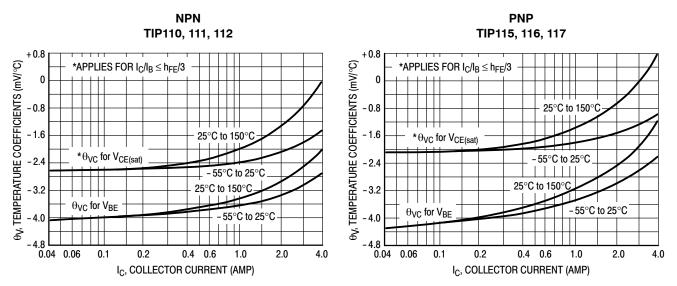


Figure 12. Temperature Coefficients

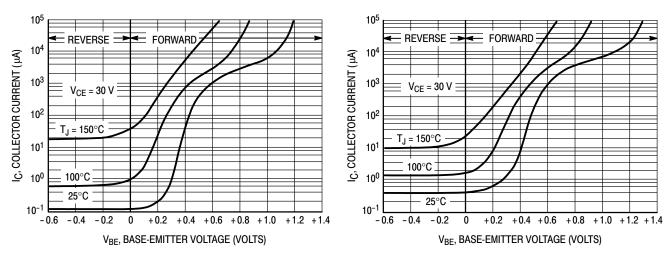


Figure 13. Collector Cut-Off Region
TEST CIRCUIT VOLTAGE AND CURRENT WAVEFORMS

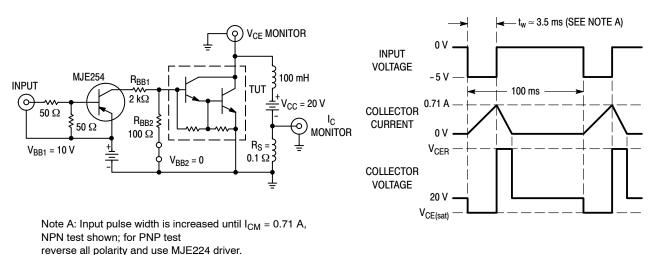
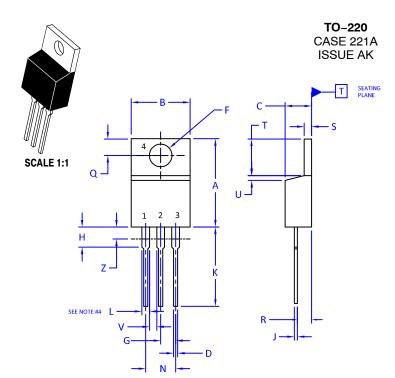



Figure 14. Inductive Load Switching

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

TIP115TU TIP110G TIP111 TIP111G TIP112G TIP115G TIP116 TIP116G TIP117 TIP117G